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1. Introduction

The multi-armed bandit problem is a sequential decision problem where, at each stage, an agent
(or forecaster) faces of a choice between a fixed number of d stochastic arms and receives a random
reward according to the distribution of the chosen arm1. His goal is simply to maximize the cumu-
lative sum of rewards.

Introduced by Robbins (1952) [9], the stochastic bandit problem and its variations have been
extensively studied over the years. It provides a useful model of what is known as the exploration-
exploitation tradeoff, a fundamental problem in many areas such as statistics, economics and machine
learning. The tradeoff arises from the fact that the agent requires more information about his en-
vironment in order to be able to take good actions. The agent can continue to exploit the arm he
knows to have performed best so far or explore other arms in the hope of finding one with higher
expected reward.

In this thesis we study a variation of the classical multi-armed bandit problem described above,
where there is no explicit trade-off between exploration and exploitation. Our setting is as follows:
the agent is allowed to sample the arms a fixed number, n, times after which he must output a
recommendation (identify some subset of the arms) corresponding to some pre-specified criterion.
This is the so-called pure-exploration problem that was introduced by Bubeck et al., 2009 [3], where
the objective was to identify the distribution with maximal mean. In this scenario, the agent is eval-
uated by the difference between the average payoff of the best arm and the average payoff obtained
by his recommendation.

The pure-exploration problem is a natural framework for applications where one needs to design
strategies that make best possible use of limited resources in order to optimize the performance of
some decision-making task. An example from [3] concerns channel allocation from mobile phone
communications. During the short time before the communication starts, a cellphone has a limited
number of evaluations to explore the set of channels to find the best one to operate. The cellphone’s
objective is to find the best channel (one with least noise) given the limited evaluations. More
generally, the pure-exploration problem applies to situations with a preliminary exploration phase
in which costs are not measured in terms of rewards but in terms of resources that come in limited
budget (i.e. time to connect for channel allocation).

For this pure-exploration problem, Audibert et al., 2010 [1] proposed an optimal parameter-free
algorithm, called SR (Successive Rejects). In particular they showed that the algorithm requires n
= O(Hlog2K) evaluations to be able to find the best arm. Furthermore the authors introduced a
notion of best arm identification complexity, denoted H, which characterizes the hardness of iden-
tifying the best distribution in a specific set of K distributions. In [4], this setting was extended
to study the m-best arm identification problem, in which the objective was to find the m arms with
highest means. The authors in the latter paper introduced a new algorithm SAR (Successive Accept

and Rejects), that required only Õ
(
H〈m〉

)
evaluations to find the top m arms. Additionally they

extended the complexity to apply to the m-best setting, denoted H〈m〉.

In this thesis, we extend the ideas in [1] and [4] to apply to the combinatorial indentification
problem, where the objective is to find the combinatorial structure with maximal mean given a fixed
number of samples. We propose two algorithms, Combinatorial SAR & SR, and define notions of gap
and complexity for the combinatorial setting. We also run some experiments on the specific setting of
finding a maximum weighted spanning tree. Ultimately, through discussion and numerical results we
suggest that extensions of SAR and SR are not suited for the problem of combinatorial identification.

1The terminology of “arms” and “bandits” originates from slot machines which are often colloquially referred to

as “one-armed bandits”.
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The organization of the thesis is as follows. In Section 2 we setup our problem, introduce relevant
notation and define complexity. In Section 3 we describe our proposed algorithms Combinato-
rial SAR & SR and discuss two specific combinatorial settings: finding maximum weighted bipartite
matchings and maximum weighted spanning trees. In Section 4 we propose some simple experiments
to compare our two algorithms against uniform sampling, for the specific combinatorial setting of
finding a maximum weighted spanning tree. Finally we conclude in Section 5 with a discussion of
possible and desirable future directions.

2. Problem Setup

2.1. Problem Statement. We are interested in the following situation: An agent faces d arms
and has a budget of n evaluations (or pulls). For each arm i ∈ {1, . . . , d} there is an associated
probability distribution νi with mean µi (we denote µ = (µ1, . . . , µd) ∈ Rd). These distributions are
unknown to the agent, but we assume that they are sub-gaussian. At each round t = 1, . . . , n, the
agent chooses an arm It, and observes a reward drawn from νIt independently from the past given It.
The agent’s goal is to identify the best subset of arms satisfying some given combinatorial structure.
More precisely, the agent is given a set C ⊂ {0, 1}d where the combinatorial set C is a a subset of
the d-dimensional hypercube {0, 1}d such that ∀ c ∈ C, ‖c‖1 = m. In other words, each element in
the set C has m arms corresponding to a combinatorial structure e.g. m edges in a spanning tree.
At the end of n evaluations, the agent selects cn ∈ C based on his observations. His objective is that
cn corresponds to the set of arms with maximal rewards.2

Parameters: number of rounds n, number of arms d, combinatorial set C.
Parameters unknown to agent: the reward distributions ν1, . . . , νd.

For each round t = 1, 2, . . . , n:

(1) the agent chooses an arm It ∈ {1, . . . , d}.
(2) the environment draws a reward XIt,TIt (t) from νIt independently from the past given It

At the end of n rounds, the agent outputs a recommendation cn (with m arms) based on his
observations.

Figure 1: The pure exploration problem for multi-armed bandits in a combinatorial setting

For each arm i we denote by Ti(t) the number of times that arm i was pulled from rounds 1 to
t. Subsequently we denote the sequence of rewards for a given arm i as Xi,1, . . . , Xi,Ti(t). Thus the

empirical mean of arm i after s pulls is X̂i,s = 1
s

∑s
t=1Xi,t.

2.2. Complexity Measures. Let c∗ = argmaxc∈C c
>µ, denote the optimal structure. We evaluate

the performance of the agent’s strategy by the probability of misidentification,

en = P
(
cn 6= argmax

c∈C
c>µ

)
.

While finer measures of performance can be proposed (such as simple regret rn = [c∗ − Ecn]), as
argued in [1] for a first order analysis we can simply focus on the quantity en.

Based on the complexity measures defined previously in [1] and [4], we introduce the following
gaps:

∆i =

∣∣∣∣ max
c∈C s.t. ci=1

c>µ− max
c∈C s.t. ci=0

c>µ

∣∣∣∣ ,
2To simplify our analysis, we will assume that the rewards are in [0, 1] and that there is a unique optimal structure

within a combinatorial setting.
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and the corresponding hardness measures:

H1 =

d∑
i=1

1

∆2
i

and H2 = max
i∈{1,...,d}

i∆−2
i

Furthermore note that the two complexity measures are equivalent up to a logarithmic factor,
below is the proof from [1] included for the sake of completeness.

Proposition 2.1. The two complexity measures H1 and H2 satisfy the following inequality:

H2 ≤ H1 ≤ log(2d)H2.

Proof. The left inequality holds as: for any i ∈ {1, . . . , d}, H1 =
∑d
k=1 ∆−2

(k) ≥
∑i
k=1 ∆−2

(i) ≥ i∆
−2
(i) .

To prove the right inequality, first let log(d) = 1
2 +

∑d
i=2

1
i and note that log(d + 1) − 1

2 ≤

log(d) ≤ log(d) + 1
2 ≤ log(2d). Then the inequality follows as:

∑d
i=1 ∆−2

(i) = ∆−2
(2) +

∑d
i=2

1
i i∆

−2
(i) ≤

log(d) maxi∈{1,...,d} i∆
−2
(i) .

�

We define two complexity measures largely because we’ve found, based on previous literature,
that the quantity H2 proves to be a very useful substitute for H1 when proving upper bounds on
en. Furthermore, while we do not prove any bounds for our problem using the complexity measures,
we argue that these quantities are indeed characteristic of the hardness of the problem. We suggest
that intuitively any strategy needs a budget n of order at least H1 to find the optimal combinatorial
structure c∗.

Consider a fixed arm i, and assume that we know the values µj , for any j 6= i. In this scenario one
faces a hypothesis testing problem for arm i needing to decide whether its value µi is large enough
to include instead of the corresponding arm in the optimal structure c∗. Let ξi be the threshold
value for this hypothesis testing problem (note that ξi depends on µ1, . . . , µi−1, µi+1, . . . , µd). To
ensure no mistake in the selection of the optimal structure, we need to sample arm i at least 1

(µi−ξi)2

times3. The key observation is to note that |µi − ξi| = ∆i. The value |µi − ξi| is exactly how much
must be added (or subtracted) to the value µi such that i becomes part of the optimal structure (is
no longer part of the optimal structure) and this matches our definition of ∆i.

3. Combinatorial best arm identification

In this section we propose two algorithms for combinatorial identification: Combinatorial SAR
and Combinatorial SR. First we define our benchmark algorithm, uniform sampling, and discuss
our motivation for trying to do better. Then we describe the algorithms in detail and discuss their
shortcomings. Finally, we conclude with a discussion in 3.4 of combinatorial identification in two
specific settings: finding the maximum weighted bipartite matching and maximum weighted span-
ning tree.

3.1. Uniform Sampling. (See Fig. 2) The uniform sampling algorithm serves as an important
theoretical benchmark to which all other algorithms are compared. The algorithm proceeds by sam-
pling each arm bn/dc times and then outputs the m arms with maximal mean corresponding to the
given combinatorial structure.

The algorithm is the simplest way to sample the arms and our motivation for proposing other
algorithms stems from the fact that there is potential to sample more intelligently. Given the
constraint of a finite number, n, of samples, we believe that by sampling more intelligently we can
get a better output as less samples are wasted on suboptimal arms.

3This fact follows from the Neyman-Pearson lemma in Statistics, which provides a bound on the power of a

hypothesis test.
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For each round t = 1, 2, . . . , n:

(1) Sample each arm bn/dc times

(2) Calculate argmaxc∈C c
>µ̂

Output: cn ∈ C such that ‖cn‖1 = m

Figure 2: Uniform Sampling for combinatorial identification

Theorem 3.1. The probability of error of Uniform Sampling in the combinatorial identification
problem satisfies

en ≤ m exp(−bn
d
c(∆2))

Proof. We apply Hoeffding’s inequality and a union bound.

P{µ̂i,n − µ̂i∗,n ≥ 0} = P{(µ̂i,n − µ̂i∗,n)− (−∆i) ≥ ∆i} ≤ exp(− 2bnd
2c∆2

i

2bnd c
) = exp(−bnd c∆

2
i )

�

3.2. Combinatorial SAR Algorithm. (See Fig. 3) The SAR (Successive Accept and Rejects)
algorithm was proposed by Bubeck et al., 2013 in [4] as a way to solve the m-best arms identification
problem. The main idea behind the algorithm is its ability to Accept (Reject) an arm if it’s confi-
dent enough that the arm is within (not within) the top m arms. In our variation for combinatorial
identification, we retain the original algorithm while including an additional step where we calcuate
an estimate of the maximum combinatorial structure, ĉ = argmaxc∈C c

>µ̂, during each phase.

Informally the algorithm proceeds as follows. First it divides the n rounds into d− 1 phases and
maintains an intial active arms set A that contains all the d arms. During each phase, it samples
each arm equally often and calculates an estimate of the optimal combinatorial structure ĉ (e.g. in
the maximum spanning tree problem it’ll calculate a max. spanning tree of size m based on the
empirical means at the end of that phase). Next it orders the empirical means of the arms in ĉ (via
a bijection σĉ), then it orders the empirical means not in ĉ (bijection σĉ⊥). Finally it creates a total
ordering of the arms (via σk = σĉ + σĉ⊥) by combining the two orderings. Then for each active arm
it calculates an estimate for the gaps and removes the arm ik with the highest gap from the active
set. If the empirical mean of removed arm ik is greater than the (m(k) + 1)th best empirical mean
(as deterimined by our ordering) then we accept the arm ik otherwise we reject it. In other words
if we find that the arm with the largest gap is within our estimate for the top m arms in cn we are
reasonably confident that it belongs to the optimal structure and so we accept it. Similarly if the
arm with the largest gap is not within our estimate for the top m arms we are reasonably confident
that it does not belong in the optimal structure and we reject it. After the d− 1 phases, we output
the m arms in our accepted set, where each arm i ∈ cn.

The length of the phases are the same as in the original SR algorithm [1], and are chosen carefully
to obtain an optimal (up to logarithmic factor) convergence rate.

d−1∑
k=1

nk = n1 + n2 + . . .+ nd−1 + nd−1 ≤ d+
n− d
log(d)

(
1

2
+

d−1∑
k=1

1

d+ 1− k
) = n.

It is important to realize that there are some issues present with this algorithm in a combinatorial
setting. Unlike in the case where we’re trying to find the m best arms, finding the optimal combi-
natorial structure is far more restrictive. This is because in the m best case the number of options
for accepting other arms remain unlimited, whereas once an arm is chosen in the combinatorial
case we restrict ourselves to simply the permutations of combinatorial structures containing that
specific arm. As a result, optimizing locally has sizeable effects on our global optimization problem.
Simply consider the case where you have two potential arms with equal means to choose from. In
this scenario given that the corresponding gaps of the arms are the same one is equally likely to
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choose either. However if it turns out that accepting the first arm restricts you to the subset of
structures that contains the optimal structure and accepting the second arm does not, then the
penalty (or reward) for choosing one arm is exceptionally high. Consequently in scenarios where
there are many bad arms to choose from it is likely that Combinatorial SAR will not work efficiently.

Let A1 = {1, . . . , d},m(1) = m, log(d) = 1
2 +

∑d
i=2

1
i , n0 = 0 and for k ∈ {1, . . . , d− 1},

nk =
⌈ 1

log(d)

n− d
d+ 1− k

⌉
.

For each phase k = 1, 2, . . . , d− 1:

(1) for each active arm i ∈ Ak, select arm i for nk − nk−1 rounds.

(2) Calculate ĉ = argmaxc∈C c
>µ̂

(3) Let σk = σĉ + σĉ⊥ : {1, . . . , d+ 1− k} → Ak be the bijection that orders the empirical
means such that σĉ orders the empirical means of the m arms in ĉ and σĉ⊥ orders the
empirical means of the (d+ 1− k)−m arms in ĉ⊥. Combining the two orderings we get a
total ordering σk over the d+ 1− k arms in the phase.

(4) Given an ordering σk of the empirical means µ̂σk(1),nk
≥ . . . µ̂σk(d+1−k),nk

. For
1 ≤ r ≤ d+ 1− k, define the empircal gaps

∆̂σk(r),nk
=

{
µ̂σk(r),nk

− µ̂σk(m(k)+1),nk
if r ≤ m(k)

µ̂σk(m(k)),nk
− µ̂σk(r),nk

if r ≥ m(k) + 1

(5) Let ik ∈ argmaxi∈Ak
∆̂i,nk

(ties broken arbitraily). Deactivate arm ik, that is set
Ak+1 = Ak \{ik}.

(6) If µ̂ik,nk
> µ̂σk(m(k)+1),nk

then arm ik is accepted and set m(k + 1) = m(k)− 1

Output: The m accepted arms such that each arm i ∈ cn.

Figure 3: SAR for combinatorial identification

3.3. Combinatorial SR Algorithm. (See Fig. 4) The SR (Successive Rejects) algorithm was pro-
posed in Audibert et al., 2010 [1] as a parameter-free algorithm to find the arm with maximal mean.
We propose a combinatorial version of this algorithm, where the key difference from the original
algorithm is that we do not maintain an accepted arms set. More specifically the algorithm proceeds
as follows. First it divides the n rounds into d − 1 phases and maintains an intial active arms set
A that contains all d arms. During each phase, it samples each arm equally often and removes the
arm with the lowest empirical mean from A. The key difference is that instead of rejecting an arm
altogether, we merely stop sampling it further. After the d − 1 phases we calculate the maximum
combinatorial structure cn, taking into account the empirical means of all arms including the ones
we rejected (i.e. the ones we simply stopped sampling further).

We propose this specific algorithm as a way to address the potential issues of using combinatorial
SAR. Note that unlike in combinatorial SAR, we’re not accepting arms nor outright rejecting arms.
Consequently the potential combinatorial structures we can choose from at the end is unlimited.
Instead we rely on the assumption that if after a number of samples the empirical mean of an arm
looks bad, it’s reasonable to stop further sampling the arm.

3.4. Applications.
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Let A1 = {1, . . . , d},m(1) = m, log(d) = 1
2 +

∑d
i=2

1
i , n0 = 0 and for k ∈ {1, . . . , d− 1},

nk =
⌈ 1

log(d)

n− d
d+ 1− k

⌉
.

For each phase k = 1, 2, . . . , d− 1:

(1) for each active arm i ∈ Ak, select arm i for nk − nk−1 rounds.

(2) Let Ak+1 = Ak \argmini∈Ak
X̂i,nk

. (remove only one element from Ak, if there is a tie,
select randomly the arm to dismiss among the worst arms

Output: Calculate cn = argmaxc∈C c
>µ̂, taking into account empirical means of all d arms.

Figure 4: SR (Successive Rejects) for combinatorial identification

3.4.1. Maximum Weighted Bipartite Matching. A particular combinatorial setting of interest is find-
ing a maximum weighted bipartite matching (often referred to as the Assignment Problem). Con-
sider the complete bipartite graph Km,m (two sets of vertices X and Y of size m where the set
of edges consists of all possible links from one set to another) with distributions as edge weights.
Let C contain all the perfect matchings of size m (a perfect matching is an injective mapping from
{1, . . . ,m} ∈ X to {1, . . . ,m} ∈ Y ) thus |C| = m! matchings. The edges in Km,m correspond to the
arms in a multi-armed bandit, where d = m2. Thus our objective is to sample the arms on Km,m a
total of n times and find the optimal combinatorial structure - the maximum weighted matching.

[4]
This combinatorial setting is motivated by a specific real world application - Ad placement. Given

m ad’s and m websites, how do we go about assigning ad’s to websites such that the expected click-
through rate (how many times the ad will be clicked on) of each ad will be as high as possible.
Clearly we can model this problem as finding a maximum weighted matching on a complete bipar-
tite graph, where the arms correspond to the click-through rate distribution of a specific ad placed
on a specific website.

While there exist algorithms for finding the maximum weighted bipartite matching in an offline
setting (most notably the Hungarian Algorithm see [10]), no efficient online versions exist for our
specific setting where the edge weights are changing dynamically (one exists but is largely intractable
to simulate see [8]). All three algorithms we propose (Uniform, Combinatorial SAR, Combinatorial
SR) represent a reasonable approach to solving the problem, while being easy to implement and
tractable for large simulations.

Another approach to formulating the problem is to state it in terms of online linear optimization.
As shown in [2], we can use the Birkhoff-von Neumann Theorem to show that the convex hull of
matchings on a bipartite graph is easily described. This is useful as it means we can state the
problem in terms of linear optimization, as maximizing a linear function is the same as maximizing
over the convex hull. While this formulation did not lead to any insights, we include it here as an
interesting alternative approach to our problem.

Using the Birkhoff-von Neuman Theorem (Every doubly stochastic matrix is a convex combination
of permutation matrices) we can describe the convex hull for bipartite matchings as follows.

Proposition 3.2. Let C be the set of matchings of size m on Km,m, then

Conv(C) =


m∑
j=1

m∑
i=1

x(i, j) = 1,∀i, j ∈ {1, . . . ,m}


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As a result our problem can be written as a linear optimization problem where we are maximizing
over the convex hull

max
x∈Conv(C)

〈x, µ〉

3.4.2. Maximum Weighted Spanning Tree. Another combinatorial setting of interest is finding the
maximum weighted spanning tree. Consider the complete graph Km+1 (set of vertices of size m+ 1
such that every pair of distinct vertices is connected by a unique edge) with distributions as edge
weights. Let C contain all the spanning tree’s of Km+1 (a spanning tree is a path through the
entire graph that contains all the vertices and no cycles), Cayley’s formula (see [10]) gives us
|C| = m+ 1m−1. The edges in Km+1 correspond to the arms in a multi-armed bandit where

d = (m+1)(m
2 . Our objective is to sample the arms on Km+1 and find the maximum weighted span-

ning tree.

In related liteature this problem is often framed as finding the minimum weighted spanning tree
(the MST problem) for which several efficient offline algorithms exist. Once again no efficient algo-
rithms exist for our specific setting of dynamically changing edge weights. We run simulations of
this particular setting in Section 4 where we use Kruskal’s algorithm (see Fig. 5) to calculate our
final optimal structure. Kruskal’s algorithm is a greedy algorithm in graph theory for finding the
minimum weighted spanning tree, to find the maximum weighted spanning tree simply multiply all
edge weights by −1 and run the algorithm.

Input: non-null connected graph G and numbers w(e) for every e ∈ E(G)

Let m+ 1 = |V (G)|

For each i = 1, . . . ,m+ 1:

(1) choose an edge ei of G with w(ei) minimum such that ei+1 6= e1, . . . , ei and
{e1, . . . , ei} ∪ {ei+1} contains no cycles

Output: Spanning tree with edge set {e1, . . . , em}.
Figure 5: Kruskal’s Algorithm

4. Experiments

In this section we run some simple experiments similar to those in Audibert et al., 2010 [1] for the
problem of finding a maximum weighted spanning tree. Our objective in running these numerical
simulations is to better inform and guide our theoretical analysis. We compare Uniform sampling
to the performance of our two proposed algorithms, where in each case we use Kruskal’s Algorithm
at the end to calculate our final spanning tree.

In our experiments we consider only Bernoulli distributions, and the optimal arm always has

parameter 1
2 . As outlined in Section 3.4.2 we only consider complete graphs Km, with m(m−1)

2 edges
which correspond to the number of arms d. We consider four different experiments where each
experiment corresponds to a different situation for the gaps, either being clustered into a few group
or distributed according to arthimetic or geometric progression. We run each experiment T = 1000
times and plot the probability of misidentification against the number of rounds n sampled. The
parameters for the experiments are as follows:

• Experiment 1: Two groups of bad arms, m = 7, d = 21, µ2:6 = 0.42, µ7:21 = 0.38.

• Experiment 2: Geometric progression, m = 4, d = 6, µi = 0.5− (0.37)i, i ∈ {2, 3, 4, 5, 6}.
• Experiment 3: Arithmetic progression, m = 6, d = 15, µi = 0.5− 0.025i, i ∈ {2, . . . , 12}.
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• Experiment 4: Three groups of bad arms, m = 9, d = 36, µ2:6 = 0.45, µ7:20 = 0.43,
µ21:30 = 0.38.

Figure 6: Simulation Results for Maximum Weighted Spanning Tree

Looking at the results in Fig. 6 we see that our algorithms performed much worse than expected.
On the whole Combinatorial SAR performs the worst between the two, however it does perform the
best for Experiment 2. Additionally as we suggested, SAR struggles in scenarios where it has many
bad arms to differentiate amongst, most notably in Experiment 4.

On the other hand, Combinatorial SR performs much better than SAR. Our strategy to not
explicitly accept or reject arms seems to have worked as SR performs well in the two experiments
with groups of bad arms. Ultimately though, it at beast does as well as Uniform but never better.

5. Conclusion

In this thesis we have studied combinatorial identification in multi-armed bandits. Our goal has
been to find a generalized sampling strategy for dynamically changing edge-weights on combinatorial
structures, that performs better than uniform sampling. Specifically we proposed two algorithms,
Combinatorial SAR & SR, which were extensions of previous work in [1] and [4]. Given the sucess
of the two algorithms in the settings of best and mbest identification, we suspected they might
extend to the general combinatorial setting. Despite finding the converse to be true, we consider
our analysis and experimental results to be useful indicators of research direction. This particular
problem has yet to be solved in any of the specific combinatorial settings that we considered, thus
an attempt to solve the problem in general is not a trivial matter.

Given our limited theoretical understanding, we propose that further experiments should be
considered. We believe that a proposed algorithmic solution will arrive from attempting several
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variations of existing sampling strategies and working backwards to develop a theoretical under-
standing. We dismiss the claim that one cannot do better than uniform sampling as clearly one can
improve one’s recommendation by not wasting samples on suboptimal arms. Ultimatley though,
based on our results we find that an entirely new algorithm must be formulated.
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Appendix A.

In this Appendix we prove several results stated earlier.

A.1. Hoeffding’s Inequality. We use a simply stated version of Hoeffding’s Inequality.

Theorem A.1. Let X1, . . . , Xn be independent identically distributed random variables with mean
µ, and bounded in the range [0,1], then

P(|X̂n − µ| ≥ t) ≤ 2e−2nt2 = 2 exp(−2nt2)

For proofs and other statements of Hoeffding’s inequality see [7].

A.2. Kruskal’s Algorithm. We provide a simpler proof of Kruskal’s Algorithm than in [10].

Definition A.2. Let T be a spanning tree of G, and let f ∈ E(G) − E(T ). A cycle C of G with
f ∈ E(C) such that C \ f is a path of T is called a fundamental cycle of f with respect to T.

Proof of Kruskal’s Algorithm.

Proof. Let e1, . . . , em be the edges generated by Kruskal’s algorithm. Choose i ∈ {1, . . . ,m} maxi-
mum such that there is a minimum weighted spanning tree (mst) containing all of e1, . . . , ei−1. We
claim that i = n. Suppose to the contrary that i 6= n. Let T be a mst containing e1, . . . , ei−1.
Then ei 6∈ E(T ) from the maximality of i. Let C be the fundamental cycle of ei with respect to
T. Since the algorithm chose edge ei, there is no cycle in {e1, . . . , ei}, and so some edge e of C is
not in {e1, . . . , ei}. There is no cycle included in {e1, . . . , ei−1, e} since all these edges belong to
T. Furthermore since the algorithm chose ei rather than e, it follows that w(ei) ≤ w(e). But since
e is an edge of the fundamental cycle of ei with respect to T, we have that w(ei) ≥ w(e), hence
w(ei) = w(e). Now note that we can construct a spanning tree T ′ with edge-set (E(T ) \ e) ∪ {ei}
and since w(ei) = w(e) it follows that T ′ is a mst. Hence e1, ..., ei ∈ E(T ′) which contradicts the
maximality of i. �
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